IFN- λ enhances influenza immunity by stimulating TSLP release during intranasal immunization

Content

Interferon- λ (IFN- λ) acts on epithelial cells and mediates innate antiviral protection of mucosal surfaces. Here we report that IFN- λ can also enhance adaptive immunity following infection of the respiratory tract. Mice deficient in IFN- λ signaling showed an impaired antibody response after influenza virus infection. We further found that subunit vaccines enriched with IFN- λ induced strongly enhanced IgG1 and IgA antibody responses in wild-type mice compared with IFN- λ -free vaccines if administrated by the intranasal route. No such adjuvant effect of IFN- λ was observed if the vaccines were administrated by the subcutaneous or intraperitoneal routes. IFN- λ triggered the synthesis of thymic stromal lymphopoietin (TSLP) in epithelial cells of the upper airways which targeted migratory dendritic cells and boosted antigen-dependent germinal center reactions in draining lymph nodes and spleen. The IFN- λ /TSLP axis not only induced strongly increased responses to influenza subunit vaccines but also enhanced survival after lethal virus challenge. Thus, IFN- λ plays an important role in potentiating adaptive immune responses which initiate in the upper airways and it has great potential to increase the effectiveness of mucosal vaccines.

Choose primary session

Vaccines and antivirals

Choose secondary Session

Vaccines and antivirals

Contribution Type : Oral presentation