Detection of Antiviral Resistance of Influenza Viruses in Bhutan, Nepal, the Philippines, and Thailand during 2013 to 2015

Content

Background: Influenza virus surveillance in Bhutan, Nepal, the Philippines and Thailand has conducted since 2008. Collected samples were tested by real-time RT-PCR (rRT-PCR) to detect influenza viruses. Antiviral resistance of randomly selected samples was also examined. This study aimed to detect antiviral resistance of samples collected from 2013 to 2015.

Methods: A total of 241 randomly selected influenza rRT-PCR positive samples included 38 influenza A(H1N1)pdm09, 139 A(H3N2), and 64 B viruses collected from 2013 to 2015 were tested by pyrosequencing and neuraminidase inhibition assay (NAI) to detect antiviral resistance. Single nucleotide polymorphisms (SNPs) was quantified in a subset of samples. Quantitative contributions of individual SNPs to changes in IC50 were fitted with additive genetic models to adjust for SNP occurrences.

Results: Only one mutation corresponding to a known antiviral resistance marker was detected from all 241 samples tested. The D197N mutation with an NAI IC50 of 14.2 nM was detected from an influenza B positive sample collected in Bhutan during 2014. SNP analysis on the sample showed two positions with mutant fractions over 20%: D197N (67%) and G407S (28%). The additive model suggests adjusted effects of those positions as 3.02 (95%CI:-0.62-6.66) and 26.05 (95%CI: 14.54-37.57), respectively. The predicted IC50 using SNPs data underestimated the observed resistance by 4.83 nM.

Conclusions: The vast majority of tested samples did not contain antiviral resistance markers. Only one sample contained a phenotypic resistance marker was detected. However, mutations known to contribute to resistance were prevalent in the minority population. Some were able to heighten IC50 at significant levels.

Choose primary session

Vaccines and antivirals

Choose secondary Session

Evolution and Emerging viruses

Contribution Type: Paper presentation